edge_impulse_runner/types.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
//! Common types and parameters used throughout the Edge Impulse Runner.
//!
//! This module contains the core data structures that define model configuration,
//! project information, and performance metrics. These types are used to configure
//! the model and interpret its outputs.
use serde::Deserialize;
use serde::Serialize;
/// Enum representing different types of anomaly detection supported by the model
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum RunnerHelloHasAnomaly {
None = 0,
KMeans = 1,
GMM = 2,
VisualGMM = 3,
}
impl From<u32> for RunnerHelloHasAnomaly {
fn from(value: u32) -> Self {
match value {
0 => Self::None,
1 => Self::KMeans,
2 => Self::GMM,
3 => Self::VisualGMM,
_ => Self::None,
}
}
}
/// Parameters that define a model's configuration and capabilities.
///
/// These parameters are received from the model during initialization and describe
/// the model's input requirements, processing settings, and output characteristics.
#[derive(Debug, Deserialize, Clone)]
pub struct ModelParameters {
/// Number of axes for motion/positional data (e.g., 3 for xyz accelerometer)
pub axis_count: u32,
/// Sampling frequency in Hz for time-series data
pub frequency: f32,
/// Indicates if the model supports anomaly detection
#[serde(deserialize_with = "deserialize_anomaly_type")]
pub has_anomaly: RunnerHelloHasAnomaly,
/// Indicates if the model supports object tracking (0 = no, 1 = yes)
#[serde(default)]
pub has_object_tracking: bool,
/// Number of color channels in input images (1 = grayscale, 3 = RGB)
pub image_channel_count: u32,
/// Number of consecutive frames required for video input
pub image_input_frames: u32,
/// Required height of input images in pixels
pub image_input_height: u32,
/// Required width of input images in pixels
pub image_input_width: u32,
/// Method used to resize input images ("fit" or "fill")
pub image_resize_mode: String,
/// Type of inferencing engine (0 = TensorFlow Lite, 1 = TensorFlow.js)
pub inferencing_engine: u32,
/// Total number of input features expected by the model
pub input_features_count: u32,
/// Time interval between samples in milliseconds
pub interval_ms: f32,
/// Number of classification labels
pub label_count: u32,
/// Vector of classification labels
pub labels: Vec<String>,
/// Type of model ("classification", "object-detection", etc.)
pub model_type: String,
/// Type of input sensor (see SensorType enum)
pub sensor: i32,
/// Size of the processing window for time-series data
pub slice_size: u32,
/// Vector of thresholds for different types of detections
#[serde(default)]
pub thresholds: Vec<ModelThreshold>,
/// Whether the model supports continuous mode operation
pub use_continuous_mode: bool,
}
impl Default for ModelParameters {
fn default() -> Self {
Self {
axis_count: 0,
frequency: 0.0,
has_anomaly: RunnerHelloHasAnomaly::None,
has_object_tracking: false,
image_channel_count: 0,
image_input_frames: 1,
image_input_height: 0,
image_input_width: 0,
image_resize_mode: String::from("fit"),
inferencing_engine: 0,
input_features_count: 0,
interval_ms: 0.0,
label_count: 0,
labels: Vec::new(),
model_type: String::from("classification"),
sensor: -1,
slice_size: 0,
thresholds: Vec::new(),
use_continuous_mode: false,
}
}
}
fn deserialize_anomaly_type<'de, D>(deserializer: D) -> Result<RunnerHelloHasAnomaly, D::Error>
where
D: serde::Deserializer<'de>,
{
let value = u32::deserialize(deserializer)?;
Ok(RunnerHelloHasAnomaly::from(value))
}
#[derive(Debug, Deserialize, Clone)]
#[serde(tag = "type")]
pub enum ModelThreshold {
#[serde(rename = "object_detection")]
ObjectDetection { id: u32, min_score: f32 },
#[serde(rename = "anomaly_gmm")]
AnomalyGMM { id: u32, min_anomaly_score: f32 },
#[serde(rename = "object_tracking")]
ObjectTracking {
id: u32,
keep_grace: u32,
max_observations: u32,
threshold: f32,
},
}
impl Default for ModelThreshold {
fn default() -> Self {
Self::ObjectDetection {
id: 0,
min_score: 0.5,
}
}
}
/// Information about the Edge Impulse project that created the model.
///
/// Contains metadata about the project's origin and version.
#[derive(Deserialize, Debug)]
pub struct ProjectInfo {
/// Version number of the deployment
pub deploy_version: u32,
/// Unique project identifier
pub id: u32,
/// Name of the project
pub name: String,
/// Username of the project owner
pub owner: String,
}
/// Performance timing information for different processing stages.
///
/// Provides detailed timing breakdowns for each step of the inference pipeline,
/// useful for performance monitoring and optimization.
#[derive(Deserialize, Debug)]
pub struct TimingInfo {
/// Time spent on digital signal processing (DSP) in microseconds
pub dsp: u32,
/// Time spent on classification inference in microseconds
pub classification: u32,
/// Time spent on anomaly detection in microseconds
pub anomaly: u32,
/// Time spent on JSON serialization/deserialization in microseconds
pub json: u32,
/// Time spent reading from standard input in microseconds
pub stdin: u32,
}
/// Represents a detected object's location and classification.
///
/// Used in object detection models to specify where objects were found
/// in an image and their classification details.
#[derive(Debug, Deserialize, Serialize)]
pub struct BoundingBox {
/// Height of the bounding box in pixels
pub height: i32,
/// Classification label for the detected object
pub label: String,
/// Confidence score for the detection (0.0 to 1.0)
pub value: f32,
/// Width of the bounding box in pixels
pub width: i32,
/// X-coordinate of the top-left corner
pub x: i32,
/// Y-coordinate of the top-left corner
pub y: i32,
}
/// Represents the normalized results of visual anomaly detection
pub type VisualAnomalyResult = (f32, f32, f32, Vec<(f32, u32, u32, u32, u32)>);
/// Represents the type of sensor used for data collection.
///
/// This enum defines the supported sensor types for Edge Impulse models,
/// mapping to the numeric values used in the protocol:
/// - -1 or unknown: Unknown
/// - 1: Microphone
/// - 2: Accelerometer
/// - 3: Camera
/// - 4: Positional
#[derive(Debug, Clone, Copy, PartialEq)]
pub enum SensorType {
/// Unknown or unsupported sensor type (-1 or default)
Unknown = -1,
/// Microphone sensor for audio input (1)
Microphone = 1,
/// Accelerometer sensor for motion data (2)
Accelerometer = 2,
/// Camera sensor for image/video input (3)
Camera = 3,
/// Positional sensor for location/orientation data (4)
Positional = 4,
}
impl From<i32> for SensorType {
fn from(value: i32) -> Self {
match value {
-1 => SensorType::Unknown,
1 => SensorType::Microphone,
2 => SensorType::Accelerometer,
3 => SensorType::Camera,
4 => SensorType::Positional,
_ => SensorType::Unknown,
}
}
}