edge_impulse_runner/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
//! # Edge Impulse
//!
//! A Rust library for running inference with Edge Impulse Linux models (EIM) and uploading data to
//! Edge Impulse. This crate provides safe and easy-to-use interfaces for:
//! - Running machine learning models on Linux and MacOS
//! - Uploading training, testing and anomaly data to Edge Impulse projects
//!
//! ## Features
//!
//! ### Inference
//! - Run Edge Impulse models (.eim files) on Linux and MacOS
//! - Support for different model types:
//!   - Classification models
//!   - Object detection models
//! - Support for different sensor types:
//!   - Camera
//!   - Microphone
//!   - Accelerometer
//!   - Positional sensors
//! - Continuous classification mode support
//! - Debug output option
//!
//! ### Data Ingestion
//! - Upload data to Edge Impulse projects
//! - Support for multiple data categories:
//!   - Training data
//!   - Testing data
//!   - Anomaly data
//! - Handle various file formats:
//!   - Images (JPG, PNG)
//!   - Audio (WAV)
//!   - Video (MP4, AVI)
//!   - Sensor data (CBOR, JSON, CSV)
//!
//! ## Quick Start Examples
//!
//! ### Basic Classification
//! ```no_run
//! use edge_impulse_runner::{EimModel, InferenceResult};
//!
//! fn main() -> Result<(), Box<dyn std::error::Error>> {
//!     // Create a new model instance
//!     let mut model = EimModel::new("path/to/model.eim")?;
//!
//!     // Prepare normalized features (e.g., image pixels, audio samples)
//!     let features: Vec<f32> = vec![0.1, 0.2, 0.3];
//!
//!     // Run inference
//!     let result = model.infer(features, None)?;
//!
//!     // Process results
//!     match result.result {
//!         InferenceResult::Classification { classification } => {
//!             println!("Classification: {:?}", classification);
//!         }
//!         InferenceResult::ObjectDetection {
//!             bounding_boxes,
//!             classification,
//!         } => {
//!             println!("Detected objects: {:?}", bounding_boxes);
//!             if !classification.is_empty() {
//!                 println!("Classification: {:?}", classification);
//!             }
//!         }
//!         InferenceResult::VisualAnomaly {
//!             visual_anomaly_grid,
//!             visual_anomaly_max,
//!             visual_anomaly_mean,
//!             anomaly,
//!         } => {
//!             let (normalized_anomaly, normalized_max, normalized_mean, normalized_regions) =
//!                 model.normalize_visual_anomaly(
//!                     anomaly,
//!                     visual_anomaly_max,
//!                     visual_anomaly_mean,
//!                     &visual_anomaly_grid.iter()
//!                         .map(|bbox| (bbox.value, bbox.x as u32, bbox.y as u32, bbox.width as u32, bbox.height as u32))
//!                         .collect::<Vec<_>>()
//!                 );
//!             println!("Anomaly score: {:.2}%", normalized_anomaly * 100.0);
//!             println!("Maximum score: {:.2}%", normalized_max * 100.0);
//!             println!("Mean score: {:.2}%", normalized_mean * 100.0);
//!             for (value, x, y, w, h) in normalized_regions {
//!                 println!("Region: score={:.2}%, x={}, y={}, width={}, height={}",
//!                     value * 100.0, x, y, w, h);
//!             }
//!         }
//!     }
//!     Ok(())
//! }
//! ```
//!
//! ### Data Upload
//! ```no_run
//! use edge_impulse_runner::ingestion::{Category, Ingestion, UploadOptions};
//!
//! # async fn run() -> Result<(), Box<dyn std::error::Error>> {
//! // Create client with API key
//! let ingestion = Ingestion::new("your-api-key".to_string());
//!
//! // Upload a file
//! let result = ingestion
//!     .upload_file(
//!         "data.jpg",
//!         Category::Training,
//!         Some("label".to_string()),
//!         Some(UploadOptions {
//!             disallow_duplicates: true,
//!             add_date_id: true,
//!         }),
//!     )
//!     .await?;
//! # Ok(())
//! # }
//! ```
//!
//! ## Architecture
//!
//! ### Inference Protocol
//! The Edge Impulse Inference Runner uses a Unix socket-based IPC mechanism to communicate
//! with the model process. The protocol is JSON-based and follows a request-response pattern
//! for model initialization, classification requests, and error handling.
//!
//! ### Ingestion API
//! The ingestion module interfaces with the Edge Impulse Ingestion API over HTTPS, supporting
//! both data and file endpoints for uploading samples to Edge Impulse projects.
//!
//! ## Prerequisites
//!
//! Some functionality (particularly video capture) requires GStreamer to be installed:
//! - **macOS**: Install both runtime and development packages from gstreamer.freedesktop.org
//! - **Linux**: Install required packages (libgstreamer1.0-dev and related packages)
//!
//! ## Error Handling
//!
//! The crate uses the `EimError` type to provide detailed error information:
//! ```no_run
//! use edge_impulse_runner::{EimModel, EimError};
//!
//! // Match on model creation
//! match EimModel::new("model.eim") {
//!     Ok(mut model) => {
//!         // Match on classification
//!         match model.infer(vec![0.1, 0.2, 0.3], None) {
//!             Ok(result) => println!("Success!"),
//!             Err(EimError::InvalidInput(msg)) => println!("Invalid input: {}", msg),
//!             Err(e) => println!("Other error: {}", e),
//!         }
//!     },
//!     Err(e) => println!("Failed to load model: {}", e),
//! }
//! ```
//!
//! ## Modules
//!
//! - `error`: Error types and handling
//! - `inference`: Model management and inference functionality
//! - `ingestion`: Data upload and project management
//! - `types`: Common types and parameters

pub mod error;
pub mod inference;
pub mod ingestion;
pub mod types;

pub use inference::messages::{InferenceResponse, InferenceResult};
pub use inference::EimModel;

pub use error::EimError;
pub use types::BoundingBox;
pub use types::ModelParameters;
pub use types::ProjectInfo;
pub use types::SensorType;
pub use types::TimingInfo;