edge_impulse_runner/inference/
model.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
use std::collections::{HashMap, VecDeque};
use std::fmt;
use std::io::{BufRead, BufReader, Write};
use std::os::unix::net::UnixStream;
use std::path::Path;
use std::process::Child;
use std::sync::atomic::{AtomicU32, Ordering};
use std::time::{Duration, Instant};

use crate::error::EimError;
use crate::inference::messages::{
    ClassifyMessage, ErrorResponse, HelloMessage, InferenceResponse, InferenceResult, ModelInfo,
    SetThresholdMessage, SetThresholdResponse, ThresholdConfig,
};
use crate::types::{ModelParameters, ModelThreshold, SensorType, VisualAnomalyResult};

/// Debug callback type for receiving debug messages
pub type DebugCallback = Box<dyn Fn(&str) + Send + Sync>;

/// Edge Impulse Model Runner for Rust
///
/// This module provides functionality for running Edge Impulse machine learning models on Linux systems.
/// It handles model lifecycle management, communication, and inference operations.
///
/// # Key Components
///
/// - `EimModel`: Main struct for managing Edge Impulse models
/// - `SensorType`: Enum representing supported sensor input types
/// - `ContinuousState`: Internal state management for continuous inference mode
/// - `MovingAverageFilter`: Smoothing filter for continuous inference results
///
/// # Features
///
/// - Model process management and Unix socket communication
/// - Support for both single-shot and continuous inference modes
/// - Debug logging and callback system
/// - Moving average filtering for continuous mode results
/// - Automatic retry mechanisms for socket connections
/// - Visual anomaly detection (FOMO AD) support with normalized scores
///
/// # Example Usage
///
/// ```no_run
/// use edge_impulse_runner::{EimModel, InferenceResult};
///
/// // Create a new model instance
/// let mut model = EimModel::new("path/to/model.eim").unwrap();
///
/// // Run inference with some features
/// let features = vec![0.1, 0.2, 0.3];
/// let result = model.infer(features, None).unwrap();
///
/// // For visual anomaly detection models, normalize the results
/// if let InferenceResult::VisualAnomaly { anomaly, visual_anomaly_max, visual_anomaly_mean, visual_anomaly_grid } = result.result {
///     let (normalized_anomaly, normalized_max, normalized_mean, normalized_regions) =
///         model.normalize_visual_anomaly(
///             anomaly,
///             visual_anomaly_max,
///             visual_anomaly_mean,
///             &visual_anomaly_grid.iter()
///                 .map(|bbox| (bbox.value, bbox.x as u32, bbox.y as u32, bbox.width as u32, bbox.height as u32))
///                 .collect::<Vec<_>>()
///         );
///     println!("Anomaly score: {:.2}%", normalized_anomaly * 100.0);
/// }
/// ```
///
/// # Communication Protocol
///
/// The model communicates with the Edge Impulse process using JSON messages over Unix sockets:
/// 1. Hello message for initialization
/// 2. Model info response
/// 3. Classification requests
/// 4. Inference responses
///
/// # Error Handling
///
/// The module uses a custom `EimError` type for error handling, covering:
/// - Invalid file paths
/// - Socket communication errors
/// - Model execution errors
/// - JSON serialization/deserialization errors
///
/// # Visual Anomaly Detection
///
/// For visual anomaly detection models (FOMO AD):
/// - Scores are normalized relative to the model's minimum anomaly threshold
/// - Results include overall anomaly score, maximum score, mean score, and anomalous regions
/// - Region coordinates are provided in the original image dimensions
/// - All scores are clamped to [0,1] range and displayed as percentages
/// - Debug mode provides detailed information about thresholds and regions
///
/// # Threshold Configuration
///
/// Models can be configured with different thresholds:
/// - Anomaly detection: `min_anomaly_score` threshold for visual anomaly detection
/// - Object detection: `min_score` threshold for object confidence
/// - Object tracking: `keep_grace`, `max_observations`, and `threshold` parameters
///
/// Thresholds can be updated at runtime using `set_learn_block_threshold`.
pub struct EimModel {
    /// Path to the Edge Impulse model file (.eim)
    path: std::path::PathBuf,
    /// Path to the Unix socket used for IPC
    socket_path: std::path::PathBuf,
    /// Active Unix socket connection to the model process
    socket: UnixStream,
    /// Enable debug logging of socket communications
    debug: bool,
    /// Optional debug callback for receiving debug messages
    debug_callback: Option<DebugCallback>,
    /// Handle to the model process (kept alive while model exists)
    _process: Child,
    /// Cached model information received during initialization
    model_info: Option<ModelInfo>,
    /// Atomic counter for generating unique message IDs
    message_id: AtomicU32,
    /// Optional child process handle for restart functionality
    #[allow(dead_code)]
    child: Option<Child>,
    continuous_state: Option<ContinuousState>,
    model_parameters: ModelParameters,
}

#[derive(Debug)]
struct ContinuousState {
    feature_matrix: Vec<f32>,
    feature_buffer_full: bool,
    maf_buffers: HashMap<String, MovingAverageFilter>,
    slice_size: usize,
}

impl ContinuousState {
    fn new(labels: Vec<String>, slice_size: usize) -> Self {
        Self {
            feature_matrix: Vec::new(),
            feature_buffer_full: false,
            maf_buffers: labels
                .into_iter()
                .map(|label| (label, MovingAverageFilter::new(4)))
                .collect(),
            slice_size,
        }
    }

    fn update_features(&mut self, features: &[f32]) {
        // Add new features to the matrix
        self.feature_matrix.extend_from_slice(features);

        // Check if buffer is full
        if self.feature_matrix.len() >= self.slice_size {
            self.feature_buffer_full = true;
            // Keep only the most recent features if we've exceeded the buffer size
            if self.feature_matrix.len() > self.slice_size {
                self.feature_matrix
                    .drain(0..self.feature_matrix.len() - self.slice_size);
            }
        }
    }

    fn apply_maf(&mut self, classification: &mut HashMap<String, f32>) {
        for (label, value) in classification.iter_mut() {
            if let Some(maf) = self.maf_buffers.get_mut(label) {
                *value = maf.update(*value);
            }
        }
    }
}

#[derive(Debug)]
struct MovingAverageFilter {
    buffer: VecDeque<f32>,
    window_size: usize,
    sum: f32,
}

impl MovingAverageFilter {
    fn new(window_size: usize) -> Self {
        Self {
            buffer: VecDeque::with_capacity(window_size),
            window_size,
            sum: 0.0,
        }
    }

    fn update(&mut self, value: f32) -> f32 {
        if self.buffer.len() >= self.window_size {
            self.sum -= self.buffer.pop_front().unwrap();
        }
        self.buffer.push_back(value);
        self.sum += value;
        self.sum / self.buffer.len() as f32
    }
}

impl fmt::Debug for EimModel {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("EimModel")
            .field("path", &self.path)
            .field("socket_path", &self.socket_path)
            .field("socket", &self.socket)
            .field("debug", &self.debug)
            .field("_process", &self._process)
            .field("model_info", &self.model_info)
            .field("message_id", &self.message_id)
            .field("child", &self.child)
            // Skip debug_callback field as it doesn't implement Debug
            .field("continuous_state", &self.continuous_state)
            .field("model_parameters", &self.model_parameters)
            .finish()
    }
}

impl EimModel {
    /// Creates a new EimModel instance from a path to the .eim file.
    ///
    /// This is the standard way to create a new model instance. The function will:
    /// 1. Validate the file extension
    /// 2. Spawn the model process
    /// 3. Establish socket communication
    /// 4. Initialize the model
    ///
    /// # Arguments
    ///
    /// * `path` - Path to the .eim file. Must be a valid Edge Impulse model file.
    ///
    /// # Returns
    ///
    /// Returns `Result<EimModel, EimError>` where:
    /// - `Ok(EimModel)` - Successfully created and initialized model
    /// - `Err(EimError)` - Failed to create model (invalid path, process spawn failure, etc.)
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use edge_impulse_runner::EimModel;
    ///
    /// let model = EimModel::new("path/to/model.eim").unwrap();
    /// ```
    pub fn new<P: AsRef<Path>>(path: P) -> Result<Self, EimError> {
        Self::new_with_debug(path, false)
    }

    /// Creates a new EimModel instance with a specific Unix socket path.
    ///
    /// Similar to `new()`, but allows specifying the socket path for communication.
    /// This is useful when you need control over the socket location or when running
    /// multiple models simultaneously.
    ///
    /// # Arguments
    ///
    /// * `path` - Path to the .eim file
    /// * `socket_path` - Custom path where the Unix socket should be created
    pub fn new_with_socket<P: AsRef<Path>, S: AsRef<Path>>(
        path: P,
        socket_path: S,
    ) -> Result<Self, EimError> {
        Self::new_with_socket_and_debug(path, socket_path, false)
    }

    /// Create a new EimModel instance with debug output enabled
    pub fn new_with_debug<P: AsRef<Path>>(path: P, debug: bool) -> Result<Self, EimError> {
        let socket_path = std::env::temp_dir().join("eim_socket");
        Self::new_with_socket_and_debug(path, &socket_path, debug)
    }

    /// Ensure the model file has execution permissions for the current user
    fn ensure_executable<P: AsRef<Path>>(path: P) -> Result<(), EimError> {
        use std::os::unix::fs::PermissionsExt;

        let path = path.as_ref();
        let metadata = std::fs::metadata(path)
            .map_err(|e| EimError::ExecutionError(format!("Failed to get file metadata: {}", e)))?;

        let perms = metadata.permissions();
        let current_mode = perms.mode();
        if current_mode & 0o100 == 0 {
            // File is not executable for user, try to make it executable
            let mut new_perms = perms;
            new_perms.set_mode(current_mode | 0o100); // Add executable bit for user only
            std::fs::set_permissions(path, new_perms).map_err(|e| {
                EimError::ExecutionError(format!("Failed to set executable permissions: {}", e))
            })?;
        }
        Ok(())
    }

    /// Create a new EimModel instance with debug output enabled and a specific socket path
    pub fn new_with_socket_and_debug<P: AsRef<Path>, S: AsRef<Path>>(
        path: P,
        socket_path: S,
        debug: bool,
    ) -> Result<Self, EimError> {
        let path = path.as_ref();
        let socket_path = socket_path.as_ref();

        // Validate file extension
        if path.extension().and_then(|s| s.to_str()) != Some("eim") {
            return Err(EimError::InvalidPath);
        }

        // Convert relative path to absolute path
        let absolute_path = if path.is_absolute() {
            path.to_path_buf()
        } else {
            std::env::current_dir()
                .map_err(|_e| EimError::InvalidPath)?
                .join(path)
        };

        // Ensure the model file is executable
        Self::ensure_executable(&absolute_path)?;

        // Start the process
        let process = std::process::Command::new(&absolute_path)
            .arg(socket_path)
            .spawn()
            .map_err(|e| EimError::ExecutionError(e.to_string()))?;

        let socket = Self::connect_with_retry(socket_path, Duration::from_secs(5))?;

        let mut model = Self {
            path: absolute_path, // Store the absolute path
            socket_path: socket_path.to_path_buf(),
            socket,
            debug,
            _process: process,
            model_info: None,
            message_id: AtomicU32::new(1),
            child: None,
            debug_callback: None,
            continuous_state: None,
            model_parameters: ModelParameters::default(),
        };

        // Initialize the model by sending hello message
        model.send_hello()?;

        Ok(model)
    }

    /// Attempts to connect to the Unix socket with a retry mechanism
    ///
    /// This function will repeatedly try to connect to the socket until either:
    /// - A successful connection is established
    /// - An unexpected error occurs
    /// - The timeout duration is exceeded
    ///
    /// # Arguments
    ///
    /// * `socket_path` - Path to the Unix socket
    /// * `timeout` - Maximum time to wait for connection
    fn connect_with_retry(socket_path: &Path, timeout: Duration) -> Result<UnixStream, EimError> {
        let start = Instant::now();
        let retry_interval = Duration::from_millis(50);

        while start.elapsed() < timeout {
            match UnixStream::connect(socket_path) {
                Ok(stream) => return Ok(stream),
                Err(e) => {
                    // NotFound and ConnectionRefused are expected errors while the socket
                    // is being created, so we retry in these cases
                    if e.kind() != std::io::ErrorKind::NotFound
                        && e.kind() != std::io::ErrorKind::ConnectionRefused
                    {
                        return Err(EimError::SocketError(format!(
                            "Failed to connect to socket: {}",
                            e
                        )));
                    }
                }
            }
            std::thread::sleep(retry_interval);
        }

        Err(EimError::SocketError(format!(
            "Timeout waiting for socket {} to become available",
            socket_path.display()
        )))
    }

    /// Get the next message ID
    fn next_message_id(&self) -> u32 {
        self.message_id.fetch_add(1, Ordering::Relaxed)
    }

    /// Set a debug callback function to receive debug messages
    ///
    /// When debug mode is enabled, this callback will be invoked with debug messages
    /// from the model runner. This is useful for logging or displaying debug information
    /// in your application.
    ///
    /// # Arguments
    ///
    /// * `callback` - Function that takes a string slice and handles the debug message
    pub fn set_debug_callback<F>(&mut self, callback: F)
    where
        F: Fn(&str) + Send + Sync + 'static,
    {
        self.debug_callback = Some(Box::new(callback));
    }

    /// Send debug messages when debug mode is enabled
    fn debug_message(&self, message: &str) {
        if self.debug {
            println!("{}", message);
            if let Some(callback) = &self.debug_callback {
                callback(message);
            }
        }
    }

    fn send_hello(&mut self) -> Result<(), EimError> {
        let hello_msg = HelloMessage {
            hello: 1,
            id: self.next_message_id(),
        };

        let msg = serde_json::to_string(&hello_msg)?;
        self.debug_message(&format!("Sending hello message: {}", msg));

        writeln!(self.socket, "{}", msg).map_err(|e| {
            self.debug_message(&format!("Failed to send hello: {}", e));
            EimError::SocketError(format!("Failed to send hello message: {}", e))
        })?;

        self.socket.flush().map_err(|e| {
            self.debug_message(&format!("Failed to flush hello: {}", e));
            EimError::SocketError(format!("Failed to flush socket: {}", e))
        })?;

        self.debug_message("Waiting for hello response...");

        let mut reader = BufReader::new(&self.socket);
        let mut line = String::new();

        match reader.read_line(&mut line) {
            Ok(n) => {
                self.debug_message(&format!("Read {} bytes: {}", n, line));

                match serde_json::from_str::<ModelInfo>(&line) {
                    Ok(info) => {
                        self.debug_message("Successfully parsed model info");
                        if !info.success {
                            self.debug_message("Model initialization failed");
                            return Err(EimError::ExecutionError(
                                "Model initialization failed".to_string(),
                            ));
                        }
                        self.debug_message("Got model info response, storing it");
                        self.model_info = Some(info);
                        return Ok(());
                    }
                    Err(e) => {
                        self.debug_message(&format!("Failed to parse model info: {}", e));
                        if let Ok(error) = serde_json::from_str::<ErrorResponse>(&line) {
                            if !error.success {
                                self.debug_message(&format!("Got error response: {:?}", error));
                                return Err(EimError::ExecutionError(
                                    error.error.unwrap_or_else(|| "Unknown error".to_string()),
                                ));
                            }
                        }
                    }
                }
            }
            Err(e) => {
                self.debug_message(&format!("Failed to read hello response: {}", e));
                return Err(EimError::SocketError(format!(
                    "Failed to read response: {}",
                    e
                )));
            }
        }

        self.debug_message("No valid hello response received");
        Err(EimError::SocketError(
            "No valid response received".to_string(),
        ))
    }

    /// Get the path to the EIM file
    pub fn path(&self) -> &Path {
        &self.path
    }

    /// Get the socket path used for communication
    pub fn socket_path(&self) -> &Path {
        &self.socket_path
    }

    /// Get the sensor type for this model
    pub fn sensor_type(&self) -> Result<SensorType, EimError> {
        self.model_info
            .as_ref()
            .map(|info| SensorType::from(info.model_parameters.sensor))
            .ok_or_else(|| EimError::ExecutionError("Model info not available".to_string()))
    }

    /// Get the model parameters
    pub fn parameters(&self) -> Result<&ModelParameters, EimError> {
        self.model_info
            .as_ref()
            .map(|info| &info.model_parameters)
            .ok_or_else(|| EimError::ExecutionError("Model info not available".to_string()))
    }

    /// Run inference on the input features
    ///
    /// This method automatically handles both continuous and non-continuous modes:
    ///
    /// ## Non-Continuous Mode
    /// - Each call is independent
    /// - All features must be provided in a single call
    /// - Results are returned immediately
    ///
    /// ## Continuous Mode (automatically enabled for supported models)
    /// - Features are accumulated across calls
    /// - Internal buffer maintains sliding window of features
    /// - Moving average filter smooths results
    /// - Initial calls may return empty results while buffer fills
    ///
    /// # Arguments
    ///
    /// * `features` - Vector of input features
    /// * `debug` - Optional debug flag to enable detailed output for this inference
    ///
    /// # Returns
    ///
    /// Returns `Result<InferenceResponse, EimError>` containing inference results
    pub fn infer(
        &mut self,
        features: Vec<f32>,
        debug: Option<bool>,
    ) -> Result<InferenceResponse, EimError> {
        // Initialize model info if needed
        if self.model_info.is_none() {
            self.send_hello()?;
        }

        let uses_continuous_mode = self.requires_continuous_mode();

        if uses_continuous_mode {
            self.infer_continuous_internal(features, debug)
        } else {
            self.infer_single(features, debug)
        }
    }

    fn infer_continuous_internal(
        &mut self,
        features: Vec<f32>,
        debug: Option<bool>,
    ) -> Result<InferenceResponse, EimError> {
        // Initialize continuous state if needed
        if self.continuous_state.is_none() {
            let labels = self
                .model_info
                .as_ref()
                .map(|info| info.model_parameters.labels.clone())
                .unwrap_or_default();
            let slice_size = self.input_size()?;

            self.continuous_state = Some(ContinuousState::new(labels, slice_size));
        }

        // Take ownership of state temporarily to avoid multiple mutable borrows
        let mut state = self.continuous_state.take().unwrap();
        state.update_features(&features);

        let response = if !state.feature_buffer_full {
            // Return empty response while building up the buffer
            Ok(InferenceResponse {
                success: true,
                id: self.next_message_id(),
                result: InferenceResult::Classification {
                    classification: HashMap::new(),
                },
            })
        } else {
            // Run inference on the full buffer
            let mut response = self.infer_single(state.feature_matrix.clone(), debug)?;

            // Apply moving average filter to the results
            if let InferenceResult::Classification {
                ref mut classification,
            } = response.result
            {
                state.apply_maf(classification);
            }

            Ok(response)
        };

        // Restore the state
        self.continuous_state = Some(state);

        response
    }

    fn infer_single(
        &mut self,
        features: Vec<f32>,
        debug: Option<bool>,
    ) -> Result<InferenceResponse, EimError> {
        // First ensure we've sent the hello message and received model info
        if self.model_info.is_none() {
            self.debug_message("No model info, sending hello message...");
            self.send_hello()?;
            self.debug_message("Hello handshake completed");
        }

        let msg = ClassifyMessage {
            classify: features.clone(),
            id: self.next_message_id(),
            debug,
        };

        let msg_str = serde_json::to_string(&msg)?;
        self.debug_message(&format!(
            "Sending inference message with {} features",
            features.len()
        ));

        writeln!(self.socket, "{}", msg_str).map_err(|e| {
            self.debug_message(&format!("Failed to send inference message: {}", e));
            EimError::SocketError(format!("Failed to send inference message: {}", e))
        })?;

        self.socket.flush().map_err(|e| {
            self.debug_message(&format!("Failed to flush inference message: {}", e));
            EimError::SocketError(format!("Failed to flush socket: {}", e))
        })?;

        self.debug_message("Inference message sent, waiting for response...");

        // Set socket to non-blocking mode
        self.socket.set_nonblocking(true).map_err(|e| {
            self.debug_message(&format!("Failed to set non-blocking mode: {}", e));
            EimError::SocketError(format!("Failed to set non-blocking mode: {}", e))
        })?;

        let mut reader = BufReader::new(&self.socket);
        let mut buffer = String::new();
        let start = Instant::now();
        let timeout = Duration::from_secs(5);

        while start.elapsed() < timeout {
            match reader.read_line(&mut buffer) {
                Ok(0) => {
                    self.debug_message("EOF reached");
                    break;
                }
                Ok(n) => {
                    // Skip printing feature values in the response
                    if !buffer.contains("features:") && !buffer.contains("Features (") {
                        self.debug_message(&format!("Read {} bytes: {}", n, buffer));
                    }

                    if let Ok(response) = serde_json::from_str::<InferenceResponse>(&buffer) {
                        if response.success {
                            self.debug_message("Got successful inference response");
                            // Reset to blocking mode before returning
                            let _ = self.socket.set_nonblocking(false);
                            return Ok(response);
                        }
                    }
                    buffer.clear();
                }
                Err(ref e) if e.kind() == std::io::ErrorKind::WouldBlock => {
                    // No data available yet, sleep briefly and retry
                    std::thread::sleep(Duration::from_millis(10));
                    continue;
                }
                Err(e) => {
                    self.debug_message(&format!("Read error: {}", e));
                    // Always try to reset blocking mode, even on error
                    let _ = self.socket.set_nonblocking(false);
                    return Err(EimError::SocketError(format!("Read error: {}", e)));
                }
            }
        }

        // Reset to blocking mode before returning
        let _ = self.socket.set_nonblocking(false);
        self.debug_message("Timeout reached");

        Err(EimError::ExecutionError(format!(
            "No valid response received within {} seconds",
            timeout.as_secs()
        )))
    }

    /// Check if model requires continuous mode
    fn requires_continuous_mode(&self) -> bool {
        self.model_info
            .as_ref()
            .map(|info| info.model_parameters.use_continuous_mode)
            .unwrap_or(false)
    }

    /// Get the required number of input features for this model
    ///
    /// Returns the number of features expected by the model for each classification.
    /// This is useful for:
    /// - Validating input size before classification
    /// - Preparing the correct amount of data
    /// - Padding or truncating inputs to match model requirements
    ///
    /// # Returns
    ///
    /// The number of input features required by the model
    pub fn input_size(&self) -> Result<usize, EimError> {
        self.model_info
            .as_ref()
            .map(|info| info.model_parameters.input_features_count as usize)
            .ok_or_else(|| EimError::ExecutionError("Model info not available".to_string()))
    }

    /// Set a threshold for a specific learning block
    ///
    /// This method allows updating thresholds for different types of blocks:
    /// - Anomaly detection (GMM)
    /// - Object detection
    /// - Object tracking
    ///
    /// # Arguments
    ///
    /// * `threshold` - The threshold configuration to set
    ///
    /// # Returns
    ///
    /// Returns `Result<(), EimError>` indicating success or failure
    pub async fn set_learn_block_threshold(
        &mut self,
        threshold: ThresholdConfig,
    ) -> Result<(), EimError> {
        // First check if model info is available and supports thresholds
        if self.model_info.is_none() {
            self.debug_message("No model info available, sending hello message...");
            self.send_hello()?;
        }

        // Log the current model state
        if let Some(info) = &self.model_info {
            self.debug_message(&format!(
                "Current model type: {}",
                info.model_parameters.model_type
            ));
            self.debug_message(&format!(
                "Current model parameters: {:?}",
                info.model_parameters
            ));
        }

        let msg = SetThresholdMessage {
            set_threshold: threshold,
            id: self.next_message_id(),
        };

        let msg_str = serde_json::to_string(&msg)?;
        self.debug_message(&format!("Sending threshold message: {}", msg_str));

        writeln!(self.socket, "{}", msg_str).map_err(|e| {
            self.debug_message(&format!("Failed to send threshold message: {}", e));
            EimError::SocketError(format!("Failed to send threshold message: {}", e))
        })?;

        self.socket.flush().map_err(|e| {
            self.debug_message(&format!("Failed to flush threshold message: {}", e));
            EimError::SocketError(format!("Failed to flush socket: {}", e))
        })?;

        let mut reader = BufReader::new(&self.socket);
        let mut line = String::new();

        match reader.read_line(&mut line) {
            Ok(_) => {
                self.debug_message(&format!("Received response: {}", line));
                match serde_json::from_str::<SetThresholdResponse>(&line) {
                    Ok(response) => {
                        if response.success {
                            self.debug_message("Successfully set threshold");
                            Ok(())
                        } else {
                            self.debug_message("Server reported failure setting threshold");
                            Err(EimError::ExecutionError(
                                "Server reported failure setting threshold".to_string(),
                            ))
                        }
                    }
                    Err(e) => {
                        self.debug_message(&format!("Failed to parse threshold response: {}", e));
                        // Try to parse as error response
                        if let Ok(error) = serde_json::from_str::<ErrorResponse>(&line) {
                            Err(EimError::ExecutionError(
                                error.error.unwrap_or_else(|| "Unknown error".to_string()),
                            ))
                        } else {
                            Err(EimError::ExecutionError(format!(
                                "Invalid threshold response format: {}",
                                e
                            )))
                        }
                    }
                }
            }
            Err(e) => {
                self.debug_message(&format!("Failed to read threshold response: {}", e));
                Err(EimError::SocketError(format!(
                    "Failed to read response: {}",
                    e
                )))
            }
        }
    }

    /// Get the minimum anomaly score threshold from model parameters
    fn get_min_anomaly_score(&self) -> f32 {
        self.model_info
            .as_ref()
            .and_then(|info| {
                info.model_parameters
                    .thresholds
                    .iter()
                    .find_map(|t| match t {
                        ModelThreshold::AnomalyGMM {
                            min_anomaly_score, ..
                        } => Some(*min_anomaly_score),
                        _ => None,
                    })
            })
            .unwrap_or(6.0)
    }

    /// Normalize an anomaly score relative to the model's minimum threshold
    fn normalize_anomaly_score(&self, score: f32) -> f32 {
        (score / self.get_min_anomaly_score()).min(1.0)
    }

    /// Normalize a visual anomaly result
    pub fn normalize_visual_anomaly(
        &self,
        anomaly: f32,
        max: f32,
        mean: f32,
        regions: &[(f32, u32, u32, u32, u32)],
    ) -> VisualAnomalyResult {
        let normalized_anomaly = self.normalize_anomaly_score(anomaly);
        let normalized_max = self.normalize_anomaly_score(max);
        let normalized_mean = self.normalize_anomaly_score(mean);
        let normalized_regions: Vec<_> = regions
            .iter()
            .map(|(value, x, y, w, h)| (self.normalize_anomaly_score(*value), *x, *y, *w, *h))
            .collect();

        (
            normalized_anomaly,
            normalized_max,
            normalized_mean,
            normalized_regions,
        )
    }
}