edge_impulse_runner/inference/model.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
use std::collections::{HashMap, VecDeque};
use std::fmt;
use std::io::{BufRead, BufReader, Write};
use std::os::unix::net::UnixStream;
use std::path::Path;
use std::process::Child;
use std::sync::atomic::{AtomicU32, Ordering};
use std::time::{Duration, Instant};
use crate::error::EimError;
use crate::inference::messages::{
ClassifyMessage, ErrorResponse, HelloMessage, InferenceResponse, InferenceResult, ModelInfo,
SetThresholdMessage, SetThresholdResponse, ThresholdConfig,
};
use crate::types::{ModelParameters, ModelThreshold, SensorType, VisualAnomalyResult};
/// Debug callback type for receiving debug messages
pub type DebugCallback = Box<dyn Fn(&str) + Send + Sync>;
/// Edge Impulse Model Runner for Rust
///
/// This module provides functionality for running Edge Impulse machine learning models on Linux systems.
/// It handles model lifecycle management, communication, and inference operations.
///
/// # Key Components
///
/// - `EimModel`: Main struct for managing Edge Impulse models
/// - `SensorType`: Enum representing supported sensor input types
/// - `ContinuousState`: Internal state management for continuous inference mode
/// - `MovingAverageFilter`: Smoothing filter for continuous inference results
///
/// # Features
///
/// - Model process management and Unix socket communication
/// - Support for both single-shot and continuous inference modes
/// - Debug logging and callback system
/// - Moving average filtering for continuous mode results
/// - Automatic retry mechanisms for socket connections
/// - Visual anomaly detection (FOMO AD) support with normalized scores
///
/// # Example Usage
///
/// ```no_run
/// use edge_impulse_runner::{EimModel, InferenceResult};
///
/// // Create a new model instance
/// let mut model = EimModel::new("path/to/model.eim").unwrap();
///
/// // Run inference with some features
/// let features = vec![0.1, 0.2, 0.3];
/// let result = model.infer(features, None).unwrap();
///
/// // For visual anomaly detection models, normalize the results
/// if let InferenceResult::VisualAnomaly { anomaly, visual_anomaly_max, visual_anomaly_mean, visual_anomaly_grid } = result.result {
/// let (normalized_anomaly, normalized_max, normalized_mean, normalized_regions) =
/// model.normalize_visual_anomaly(
/// anomaly,
/// visual_anomaly_max,
/// visual_anomaly_mean,
/// &visual_anomaly_grid.iter()
/// .map(|bbox| (bbox.value, bbox.x as u32, bbox.y as u32, bbox.width as u32, bbox.height as u32))
/// .collect::<Vec<_>>()
/// );
/// println!("Anomaly score: {:.2}%", normalized_anomaly * 100.0);
/// }
/// ```
///
/// # Communication Protocol
///
/// The model communicates with the Edge Impulse process using JSON messages over Unix sockets:
/// 1. Hello message for initialization
/// 2. Model info response
/// 3. Classification requests
/// 4. Inference responses
///
/// # Error Handling
///
/// The module uses a custom `EimError` type for error handling, covering:
/// - Invalid file paths
/// - Socket communication errors
/// - Model execution errors
/// - JSON serialization/deserialization errors
///
/// # Visual Anomaly Detection
///
/// For visual anomaly detection models (FOMO AD):
/// - Scores are normalized relative to the model's minimum anomaly threshold
/// - Results include overall anomaly score, maximum score, mean score, and anomalous regions
/// - Region coordinates are provided in the original image dimensions
/// - All scores are clamped to [0,1] range and displayed as percentages
/// - Debug mode provides detailed information about thresholds and regions
///
/// # Threshold Configuration
///
/// Models can be configured with different thresholds:
/// - Anomaly detection: `min_anomaly_score` threshold for visual anomaly detection
/// - Object detection: `min_score` threshold for object confidence
/// - Object tracking: `keep_grace`, `max_observations`, and `threshold` parameters
///
/// Thresholds can be updated at runtime using `set_learn_block_threshold`.
pub struct EimModel {
/// Path to the Edge Impulse model file (.eim)
path: std::path::PathBuf,
/// Path to the Unix socket used for IPC
socket_path: std::path::PathBuf,
/// Active Unix socket connection to the model process
socket: UnixStream,
/// Enable debug logging of socket communications
debug: bool,
/// Optional debug callback for receiving debug messages
debug_callback: Option<DebugCallback>,
/// Handle to the model process (kept alive while model exists)
_process: Child,
/// Cached model information received during initialization
model_info: Option<ModelInfo>,
/// Atomic counter for generating unique message IDs
message_id: AtomicU32,
/// Optional child process handle for restart functionality
#[allow(dead_code)]
child: Option<Child>,
continuous_state: Option<ContinuousState>,
model_parameters: ModelParameters,
}
#[derive(Debug)]
struct ContinuousState {
feature_matrix: Vec<f32>,
feature_buffer_full: bool,
maf_buffers: HashMap<String, MovingAverageFilter>,
slice_size: usize,
}
impl ContinuousState {
fn new(labels: Vec<String>, slice_size: usize) -> Self {
Self {
feature_matrix: Vec::new(),
feature_buffer_full: false,
maf_buffers: labels
.into_iter()
.map(|label| (label, MovingAverageFilter::new(4)))
.collect(),
slice_size,
}
}
fn update_features(&mut self, features: &[f32]) {
// Add new features to the matrix
self.feature_matrix.extend_from_slice(features);
// Check if buffer is full
if self.feature_matrix.len() >= self.slice_size {
self.feature_buffer_full = true;
// Keep only the most recent features if we've exceeded the buffer size
if self.feature_matrix.len() > self.slice_size {
self.feature_matrix
.drain(0..self.feature_matrix.len() - self.slice_size);
}
}
}
fn apply_maf(&mut self, classification: &mut HashMap<String, f32>) {
for (label, value) in classification.iter_mut() {
if let Some(maf) = self.maf_buffers.get_mut(label) {
*value = maf.update(*value);
}
}
}
}
#[derive(Debug)]
struct MovingAverageFilter {
buffer: VecDeque<f32>,
window_size: usize,
sum: f32,
}
impl MovingAverageFilter {
fn new(window_size: usize) -> Self {
Self {
buffer: VecDeque::with_capacity(window_size),
window_size,
sum: 0.0,
}
}
fn update(&mut self, value: f32) -> f32 {
if self.buffer.len() >= self.window_size {
self.sum -= self.buffer.pop_front().unwrap();
}
self.buffer.push_back(value);
self.sum += value;
self.sum / self.buffer.len() as f32
}
}
impl fmt::Debug for EimModel {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("EimModel")
.field("path", &self.path)
.field("socket_path", &self.socket_path)
.field("socket", &self.socket)
.field("debug", &self.debug)
.field("_process", &self._process)
.field("model_info", &self.model_info)
.field("message_id", &self.message_id)
.field("child", &self.child)
// Skip debug_callback field as it doesn't implement Debug
.field("continuous_state", &self.continuous_state)
.field("model_parameters", &self.model_parameters)
.finish()
}
}
impl EimModel {
/// Creates a new EimModel instance from a path to the .eim file.
///
/// This is the standard way to create a new model instance. The function will:
/// 1. Validate the file extension
/// 2. Spawn the model process
/// 3. Establish socket communication
/// 4. Initialize the model
///
/// # Arguments
///
/// * `path` - Path to the .eim file. Must be a valid Edge Impulse model file.
///
/// # Returns
///
/// Returns `Result<EimModel, EimError>` where:
/// - `Ok(EimModel)` - Successfully created and initialized model
/// - `Err(EimError)` - Failed to create model (invalid path, process spawn failure, etc.)
///
/// # Examples
///
/// ```no_run
/// use edge_impulse_runner::EimModel;
///
/// let model = EimModel::new("path/to/model.eim").unwrap();
/// ```
pub fn new<P: AsRef<Path>>(path: P) -> Result<Self, EimError> {
Self::new_with_debug(path, false)
}
/// Creates a new EimModel instance with a specific Unix socket path.
///
/// Similar to `new()`, but allows specifying the socket path for communication.
/// This is useful when you need control over the socket location or when running
/// multiple models simultaneously.
///
/// # Arguments
///
/// * `path` - Path to the .eim file
/// * `socket_path` - Custom path where the Unix socket should be created
pub fn new_with_socket<P: AsRef<Path>, S: AsRef<Path>>(
path: P,
socket_path: S,
) -> Result<Self, EimError> {
Self::new_with_socket_and_debug(path, socket_path, false)
}
/// Create a new EimModel instance with debug output enabled
pub fn new_with_debug<P: AsRef<Path>>(path: P, debug: bool) -> Result<Self, EimError> {
let socket_path = std::env::temp_dir().join("eim_socket");
Self::new_with_socket_and_debug(path, &socket_path, debug)
}
/// Ensure the model file has execution permissions for the current user
fn ensure_executable<P: AsRef<Path>>(path: P) -> Result<(), EimError> {
use std::os::unix::fs::PermissionsExt;
let path = path.as_ref();
let metadata = std::fs::metadata(path)
.map_err(|e| EimError::ExecutionError(format!("Failed to get file metadata: {}", e)))?;
let perms = metadata.permissions();
let current_mode = perms.mode();
if current_mode & 0o100 == 0 {
// File is not executable for user, try to make it executable
let mut new_perms = perms;
new_perms.set_mode(current_mode | 0o100); // Add executable bit for user only
std::fs::set_permissions(path, new_perms).map_err(|e| {
EimError::ExecutionError(format!("Failed to set executable permissions: {}", e))
})?;
}
Ok(())
}
/// Create a new EimModel instance with debug output enabled and a specific socket path
pub fn new_with_socket_and_debug<P: AsRef<Path>, S: AsRef<Path>>(
path: P,
socket_path: S,
debug: bool,
) -> Result<Self, EimError> {
let path = path.as_ref();
let socket_path = socket_path.as_ref();
// Validate file extension
if path.extension().and_then(|s| s.to_str()) != Some("eim") {
return Err(EimError::InvalidPath);
}
// Convert relative path to absolute path
let absolute_path = if path.is_absolute() {
path.to_path_buf()
} else {
std::env::current_dir()
.map_err(|_e| EimError::InvalidPath)?
.join(path)
};
// Ensure the model file is executable
Self::ensure_executable(&absolute_path)?;
// Start the process
let process = std::process::Command::new(&absolute_path)
.arg(socket_path)
.spawn()
.map_err(|e| EimError::ExecutionError(e.to_string()))?;
let socket = Self::connect_with_retry(socket_path, Duration::from_secs(5))?;
let mut model = Self {
path: absolute_path, // Store the absolute path
socket_path: socket_path.to_path_buf(),
socket,
debug,
_process: process,
model_info: None,
message_id: AtomicU32::new(1),
child: None,
debug_callback: None,
continuous_state: None,
model_parameters: ModelParameters::default(),
};
// Initialize the model by sending hello message
model.send_hello()?;
Ok(model)
}
/// Attempts to connect to the Unix socket with a retry mechanism
///
/// This function will repeatedly try to connect to the socket until either:
/// - A successful connection is established
/// - An unexpected error occurs
/// - The timeout duration is exceeded
///
/// # Arguments
///
/// * `socket_path` - Path to the Unix socket
/// * `timeout` - Maximum time to wait for connection
fn connect_with_retry(socket_path: &Path, timeout: Duration) -> Result<UnixStream, EimError> {
let start = Instant::now();
let retry_interval = Duration::from_millis(50);
while start.elapsed() < timeout {
match UnixStream::connect(socket_path) {
Ok(stream) => return Ok(stream),
Err(e) => {
// NotFound and ConnectionRefused are expected errors while the socket
// is being created, so we retry in these cases
if e.kind() != std::io::ErrorKind::NotFound
&& e.kind() != std::io::ErrorKind::ConnectionRefused
{
return Err(EimError::SocketError(format!(
"Failed to connect to socket: {}",
e
)));
}
}
}
std::thread::sleep(retry_interval);
}
Err(EimError::SocketError(format!(
"Timeout waiting for socket {} to become available",
socket_path.display()
)))
}
/// Get the next message ID
fn next_message_id(&self) -> u32 {
self.message_id.fetch_add(1, Ordering::Relaxed)
}
/// Set a debug callback function to receive debug messages
///
/// When debug mode is enabled, this callback will be invoked with debug messages
/// from the model runner. This is useful for logging or displaying debug information
/// in your application.
///
/// # Arguments
///
/// * `callback` - Function that takes a string slice and handles the debug message
pub fn set_debug_callback<F>(&mut self, callback: F)
where
F: Fn(&str) + Send + Sync + 'static,
{
self.debug_callback = Some(Box::new(callback));
}
/// Send debug messages when debug mode is enabled
fn debug_message(&self, message: &str) {
if self.debug {
println!("{}", message);
if let Some(callback) = &self.debug_callback {
callback(message);
}
}
}
fn send_hello(&mut self) -> Result<(), EimError> {
let hello_msg = HelloMessage {
hello: 1,
id: self.next_message_id(),
};
let msg = serde_json::to_string(&hello_msg)?;
self.debug_message(&format!("Sending hello message: {}", msg));
writeln!(self.socket, "{}", msg).map_err(|e| {
self.debug_message(&format!("Failed to send hello: {}", e));
EimError::SocketError(format!("Failed to send hello message: {}", e))
})?;
self.socket.flush().map_err(|e| {
self.debug_message(&format!("Failed to flush hello: {}", e));
EimError::SocketError(format!("Failed to flush socket: {}", e))
})?;
self.debug_message("Waiting for hello response...");
let mut reader = BufReader::new(&self.socket);
let mut line = String::new();
match reader.read_line(&mut line) {
Ok(n) => {
self.debug_message(&format!("Read {} bytes: {}", n, line));
match serde_json::from_str::<ModelInfo>(&line) {
Ok(info) => {
self.debug_message("Successfully parsed model info");
if !info.success {
self.debug_message("Model initialization failed");
return Err(EimError::ExecutionError(
"Model initialization failed".to_string(),
));
}
self.debug_message("Got model info response, storing it");
self.model_info = Some(info);
return Ok(());
}
Err(e) => {
self.debug_message(&format!("Failed to parse model info: {}", e));
if let Ok(error) = serde_json::from_str::<ErrorResponse>(&line) {
if !error.success {
self.debug_message(&format!("Got error response: {:?}", error));
return Err(EimError::ExecutionError(
error.error.unwrap_or_else(|| "Unknown error".to_string()),
));
}
}
}
}
}
Err(e) => {
self.debug_message(&format!("Failed to read hello response: {}", e));
return Err(EimError::SocketError(format!(
"Failed to read response: {}",
e
)));
}
}
self.debug_message("No valid hello response received");
Err(EimError::SocketError(
"No valid response received".to_string(),
))
}
/// Get the path to the EIM file
pub fn path(&self) -> &Path {
&self.path
}
/// Get the socket path used for communication
pub fn socket_path(&self) -> &Path {
&self.socket_path
}
/// Get the sensor type for this model
pub fn sensor_type(&self) -> Result<SensorType, EimError> {
self.model_info
.as_ref()
.map(|info| SensorType::from(info.model_parameters.sensor))
.ok_or_else(|| EimError::ExecutionError("Model info not available".to_string()))
}
/// Get the model parameters
pub fn parameters(&self) -> Result<&ModelParameters, EimError> {
self.model_info
.as_ref()
.map(|info| &info.model_parameters)
.ok_or_else(|| EimError::ExecutionError("Model info not available".to_string()))
}
/// Run inference on the input features
///
/// This method automatically handles both continuous and non-continuous modes:
///
/// ## Non-Continuous Mode
/// - Each call is independent
/// - All features must be provided in a single call
/// - Results are returned immediately
///
/// ## Continuous Mode (automatically enabled for supported models)
/// - Features are accumulated across calls
/// - Internal buffer maintains sliding window of features
/// - Moving average filter smooths results
/// - Initial calls may return empty results while buffer fills
///
/// # Arguments
///
/// * `features` - Vector of input features
/// * `debug` - Optional debug flag to enable detailed output for this inference
///
/// # Returns
///
/// Returns `Result<InferenceResponse, EimError>` containing inference results
pub fn infer(
&mut self,
features: Vec<f32>,
debug: Option<bool>,
) -> Result<InferenceResponse, EimError> {
// Initialize model info if needed
if self.model_info.is_none() {
self.send_hello()?;
}
let uses_continuous_mode = self.requires_continuous_mode();
if uses_continuous_mode {
self.infer_continuous_internal(features, debug)
} else {
self.infer_single(features, debug)
}
}
fn infer_continuous_internal(
&mut self,
features: Vec<f32>,
debug: Option<bool>,
) -> Result<InferenceResponse, EimError> {
// Initialize continuous state if needed
if self.continuous_state.is_none() {
let labels = self
.model_info
.as_ref()
.map(|info| info.model_parameters.labels.clone())
.unwrap_or_default();
let slice_size = self.input_size()?;
self.continuous_state = Some(ContinuousState::new(labels, slice_size));
}
// Take ownership of state temporarily to avoid multiple mutable borrows
let mut state = self.continuous_state.take().unwrap();
state.update_features(&features);
let response = if !state.feature_buffer_full {
// Return empty response while building up the buffer
Ok(InferenceResponse {
success: true,
id: self.next_message_id(),
result: InferenceResult::Classification {
classification: HashMap::new(),
},
})
} else {
// Run inference on the full buffer
let mut response = self.infer_single(state.feature_matrix.clone(), debug)?;
// Apply moving average filter to the results
if let InferenceResult::Classification {
ref mut classification,
} = response.result
{
state.apply_maf(classification);
}
Ok(response)
};
// Restore the state
self.continuous_state = Some(state);
response
}
fn infer_single(
&mut self,
features: Vec<f32>,
debug: Option<bool>,
) -> Result<InferenceResponse, EimError> {
// First ensure we've sent the hello message and received model info
if self.model_info.is_none() {
self.debug_message("No model info, sending hello message...");
self.send_hello()?;
self.debug_message("Hello handshake completed");
}
let msg = ClassifyMessage {
classify: features.clone(),
id: self.next_message_id(),
debug,
};
let msg_str = serde_json::to_string(&msg)?;
self.debug_message(&format!(
"Sending inference message with {} features",
features.len()
));
writeln!(self.socket, "{}", msg_str).map_err(|e| {
self.debug_message(&format!("Failed to send inference message: {}", e));
EimError::SocketError(format!("Failed to send inference message: {}", e))
})?;
self.socket.flush().map_err(|e| {
self.debug_message(&format!("Failed to flush inference message: {}", e));
EimError::SocketError(format!("Failed to flush socket: {}", e))
})?;
self.debug_message("Inference message sent, waiting for response...");
// Set socket to non-blocking mode
self.socket.set_nonblocking(true).map_err(|e| {
self.debug_message(&format!("Failed to set non-blocking mode: {}", e));
EimError::SocketError(format!("Failed to set non-blocking mode: {}", e))
})?;
let mut reader = BufReader::new(&self.socket);
let mut buffer = String::new();
let start = Instant::now();
let timeout = Duration::from_secs(5);
while start.elapsed() < timeout {
match reader.read_line(&mut buffer) {
Ok(0) => {
self.debug_message("EOF reached");
break;
}
Ok(n) => {
// Skip printing feature values in the response
if !buffer.contains("features:") && !buffer.contains("Features (") {
self.debug_message(&format!("Read {} bytes: {}", n, buffer));
}
if let Ok(response) = serde_json::from_str::<InferenceResponse>(&buffer) {
if response.success {
self.debug_message("Got successful inference response");
// Reset to blocking mode before returning
let _ = self.socket.set_nonblocking(false);
return Ok(response);
}
}
buffer.clear();
}
Err(ref e) if e.kind() == std::io::ErrorKind::WouldBlock => {
// No data available yet, sleep briefly and retry
std::thread::sleep(Duration::from_millis(10));
continue;
}
Err(e) => {
self.debug_message(&format!("Read error: {}", e));
// Always try to reset blocking mode, even on error
let _ = self.socket.set_nonblocking(false);
return Err(EimError::SocketError(format!("Read error: {}", e)));
}
}
}
// Reset to blocking mode before returning
let _ = self.socket.set_nonblocking(false);
self.debug_message("Timeout reached");
Err(EimError::ExecutionError(format!(
"No valid response received within {} seconds",
timeout.as_secs()
)))
}
/// Check if model requires continuous mode
fn requires_continuous_mode(&self) -> bool {
self.model_info
.as_ref()
.map(|info| info.model_parameters.use_continuous_mode)
.unwrap_or(false)
}
/// Get the required number of input features for this model
///
/// Returns the number of features expected by the model for each classification.
/// This is useful for:
/// - Validating input size before classification
/// - Preparing the correct amount of data
/// - Padding or truncating inputs to match model requirements
///
/// # Returns
///
/// The number of input features required by the model
pub fn input_size(&self) -> Result<usize, EimError> {
self.model_info
.as_ref()
.map(|info| info.model_parameters.input_features_count as usize)
.ok_or_else(|| EimError::ExecutionError("Model info not available".to_string()))
}
/// Set a threshold for a specific learning block
///
/// This method allows updating thresholds for different types of blocks:
/// - Anomaly detection (GMM)
/// - Object detection
/// - Object tracking
///
/// # Arguments
///
/// * `threshold` - The threshold configuration to set
///
/// # Returns
///
/// Returns `Result<(), EimError>` indicating success or failure
pub async fn set_learn_block_threshold(
&mut self,
threshold: ThresholdConfig,
) -> Result<(), EimError> {
// First check if model info is available and supports thresholds
if self.model_info.is_none() {
self.debug_message("No model info available, sending hello message...");
self.send_hello()?;
}
// Log the current model state
if let Some(info) = &self.model_info {
self.debug_message(&format!(
"Current model type: {}",
info.model_parameters.model_type
));
self.debug_message(&format!(
"Current model parameters: {:?}",
info.model_parameters
));
}
let msg = SetThresholdMessage {
set_threshold: threshold,
id: self.next_message_id(),
};
let msg_str = serde_json::to_string(&msg)?;
self.debug_message(&format!("Sending threshold message: {}", msg_str));
writeln!(self.socket, "{}", msg_str).map_err(|e| {
self.debug_message(&format!("Failed to send threshold message: {}", e));
EimError::SocketError(format!("Failed to send threshold message: {}", e))
})?;
self.socket.flush().map_err(|e| {
self.debug_message(&format!("Failed to flush threshold message: {}", e));
EimError::SocketError(format!("Failed to flush socket: {}", e))
})?;
let mut reader = BufReader::new(&self.socket);
let mut line = String::new();
match reader.read_line(&mut line) {
Ok(_) => {
self.debug_message(&format!("Received response: {}", line));
match serde_json::from_str::<SetThresholdResponse>(&line) {
Ok(response) => {
if response.success {
self.debug_message("Successfully set threshold");
Ok(())
} else {
self.debug_message("Server reported failure setting threshold");
Err(EimError::ExecutionError(
"Server reported failure setting threshold".to_string(),
))
}
}
Err(e) => {
self.debug_message(&format!("Failed to parse threshold response: {}", e));
// Try to parse as error response
if let Ok(error) = serde_json::from_str::<ErrorResponse>(&line) {
Err(EimError::ExecutionError(
error.error.unwrap_or_else(|| "Unknown error".to_string()),
))
} else {
Err(EimError::ExecutionError(format!(
"Invalid threshold response format: {}",
e
)))
}
}
}
}
Err(e) => {
self.debug_message(&format!("Failed to read threshold response: {}", e));
Err(EimError::SocketError(format!(
"Failed to read response: {}",
e
)))
}
}
}
/// Get the minimum anomaly score threshold from model parameters
fn get_min_anomaly_score(&self) -> f32 {
self.model_info
.as_ref()
.and_then(|info| {
info.model_parameters
.thresholds
.iter()
.find_map(|t| match t {
ModelThreshold::AnomalyGMM {
min_anomaly_score, ..
} => Some(*min_anomaly_score),
_ => None,
})
})
.unwrap_or(6.0)
}
/// Normalize an anomaly score relative to the model's minimum threshold
fn normalize_anomaly_score(&self, score: f32) -> f32 {
(score / self.get_min_anomaly_score()).min(1.0)
}
/// Normalize a visual anomaly result
pub fn normalize_visual_anomaly(
&self,
anomaly: f32,
max: f32,
mean: f32,
regions: &[(f32, u32, u32, u32, u32)],
) -> VisualAnomalyResult {
let normalized_anomaly = self.normalize_anomaly_score(anomaly);
let normalized_max = self.normalize_anomaly_score(max);
let normalized_mean = self.normalize_anomaly_score(mean);
let normalized_regions: Vec<_> = regions
.iter()
.map(|(value, x, y, w, h)| (self.normalize_anomaly_score(*value), *x, *y, *w, *h))
.collect();
(
normalized_anomaly,
normalized_max,
normalized_mean,
normalized_regions,
)
}
}