Crate edge_impulse_runner

Source
Expand description

§Edge Impulse

A Rust library for running inference with Edge Impulse Linux models (EIM) and uploading data to Edge Impulse. This crate provides safe and easy-to-use interfaces for:

  • Running machine learning models on Linux and MacOS
  • Uploading training, testing and anomaly data to Edge Impulse projects

§Features

§Inference

  • Run Edge Impulse models (.eim files) on Linux and MacOS
  • Support for different model types:
    • Classification models
    • Object detection models
  • Support for different sensor types:
    • Camera
    • Microphone
    • Accelerometer
    • Positional sensors
  • Continuous classification mode support
  • Debug output option

§Data Ingestion

  • Upload data to Edge Impulse projects
  • Support for multiple data categories:
    • Training data
    • Testing data
    • Anomaly data
  • Handle various file formats:
    • Images (JPG, PNG)
    • Audio (WAV)
    • Video (MP4, AVI)
    • Sensor data (CBOR, JSON, CSV)

§Quick Start Examples

§Basic Classification

use edge_impulse_runner::{EimModel, InferenceResult};

fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Create a new model instance
    let mut model = EimModel::new("path/to/model.eim")?;

    // Prepare normalized features (e.g., image pixels, audio samples)
    let features: Vec<f32> = vec![0.1, 0.2, 0.3];

    // Run inference
    let result = model.infer(features, None)?;

    // Process results
    match result.result {
        InferenceResult::Classification { classification } => {
            println!("Classification: {:?}", classification);
        }
        InferenceResult::ObjectDetection {
            bounding_boxes,
            classification,
        } => {
            println!("Detected objects: {:?}", bounding_boxes);
            if !classification.is_empty() {
                println!("Classification: {:?}", classification);
            }
        }
        InferenceResult::VisualAnomaly {
            visual_anomaly_grid,
            visual_anomaly_max,
            visual_anomaly_mean,
            anomaly,
        } => {
            let (normalized_anomaly, normalized_max, normalized_mean, normalized_regions) =
                model.normalize_visual_anomaly(
                    anomaly,
                    visual_anomaly_max,
                    visual_anomaly_mean,
                    &visual_anomaly_grid.iter()
                        .map(|bbox| (bbox.value, bbox.x as u32, bbox.y as u32, bbox.width as u32, bbox.height as u32))
                        .collect::<Vec<_>>()
                );
            println!("Anomaly score: {:.2}%", normalized_anomaly * 100.0);
            println!("Maximum score: {:.2}%", normalized_max * 100.0);
            println!("Mean score: {:.2}%", normalized_mean * 100.0);
            for (value, x, y, w, h) in normalized_regions {
                println!("Region: score={:.2}%, x={}, y={}, width={}, height={}",
                    value * 100.0, x, y, w, h);
            }
        }
    }
    Ok(())
}

§Data Upload

use edge_impulse_runner::ingestion::{Category, Ingestion, UploadOptions};

// Create client with API key
let ingestion = Ingestion::new("your-api-key".to_string());

// Upload a file
let result = ingestion
    .upload_file(
        "data.jpg",
        Category::Training,
        Some("label".to_string()),
        Some(UploadOptions {
            disallow_duplicates: true,
            add_date_id: true,
        }),
    )
    .await?;

§Architecture

§Inference Protocol

The Edge Impulse Inference Runner uses a Unix socket-based IPC mechanism to communicate with the model process. The protocol is JSON-based and follows a request-response pattern for model initialization, classification requests, and error handling.

§Ingestion API

The ingestion module interfaces with the Edge Impulse Ingestion API over HTTPS, supporting both data and file endpoints for uploading samples to Edge Impulse projects.

§Prerequisites

Some functionality (particularly video capture) requires GStreamer to be installed:

  • macOS: Install both runtime and development packages from gstreamer.freedesktop.org
  • Linux: Install required packages (libgstreamer1.0-dev and related packages)

§Error Handling

The crate uses the EimError type to provide detailed error information:

use edge_impulse_runner::{EimModel, EimError};

// Match on model creation
match EimModel::new("model.eim") {
    Ok(mut model) => {
        // Match on classification
        match model.infer(vec![0.1, 0.2, 0.3], None) {
            Ok(result) => println!("Success!"),
            Err(EimError::InvalidInput(msg)) => println!("Invalid input: {}", msg),
            Err(e) => println!("Other error: {}", e),
        }
    },
    Err(e) => println!("Failed to load model: {}", e),
}

§Modules

  • error: Error types and handling
  • inference: Model management and inference functionality
  • ingestion: Data upload and project management
  • types: Common types and parameters

Re-exports§

Modules§